Vergleich Erdfeld-Mondfeld



Erdfeld


Das Erdmagnetfeld durchdringt und umgibt die Erde. Es besteht aus drei Komponenten. Der Hauptanteil des Magnetfeldes (ca. 95 %) wird vom Geodynamo im flüssigen äußeren Erdkern hervorgerufen. Dieser Feldanteil unterliegt langsamen zeitlichen Veränderungen. Über lange Zeiträume (zehntausende Jahre) hat er an der Erdoberfläche annähernd die Feldform eines magnetischen Dipols, leicht schief zur Erdachse. Dazwischen erfolgen geomagnetische Exkursionen auf einer Zeitskala von Jahrhunderten, die zu Polsprüngen führen können.

Ein zweiter Anteil des Erdmagnetfeldes entsteht durch elektrische Ströme in der Ionosphäre und der Magnetosphäre. Er trägt an der Erdoberfläche etwa 1 bis 3 % zum Gesamtfeld bei. Die Ursachen sind einerseits Winde in der Ionosphäre (sq-Effekt), die einen Tages- und Jahresgang zeigen, andererseits Wirkungen des magnetisierten Plasmas des Sonnenwindes, der jenseits der Magnetosphäre herrscht; er staucht sie auf der Tagseite und zieht sie auf der Nachtseite zu einem langen Schlauch aus. Die so erzeugten magnetischen Stürme führen zu schnellen Schwankungen, die Polarlichter, aber auch Störungen des Funkverkehrs bewirken.

Der dritte Anteil variiert räumlich stark, denn er zeigt höhere Multipol-Komponenten (siehe Geomagnetik). Zeitlich verändert er sich nur in geologischen Zeiträumen. Er besteht in dem Feld der remanenten Magnetisierung in Teilen der oberen Erdkruste z. B. Erzlagerstätten. Diese „Störfelder“ können lokal mehrere Prozent des Gesamtfeldes ausmachen.

Die Magnetisierung ferromagnetischer Einschlüsse in den ältesten irdischen Mineralen, den Zirkonen, zeigt, dass das Erdmagnetfeld bereits vor über vier Milliarden Jahren bestand.[1] In einigen geologischen Formationen lassen sich aus der örtlichen Magnetisierung zahlreiche Polsprünge ablesen (Magnetostratigraphie).

Die Stärke und Richtung des Erdmagnetfeldes variieren mit dem Ort der Messung. Die zur Erdoberfläche horizontale Komponente beträgt in Deutschland etwa 20 Mikrotesla, die vertikale etwa 44 Mikrotesla. Ausgenutzt wird das Erdmagnetfeld z. B. in der geophysikalischen Prospektion und in der Navigation. Es wird ein Zusammenhang der globalen Mitteltemperatur mit den Variationen des Erdmagnetfeldes vermutet.[25] Manche Forscher wie Henrik Svensmark, die die menschengemachte Erderwärmung bestreiten, postulieren einen darüber hinausgehenden Zusammenhang zwischen Erdmagnetfeld und Klima, um eine andere Erklärung für die stark beschleunigte globale Erwärmung zu finden als den Menschen. Zwar lassen Experimente darauf schließen, dass es tatsächlich eine Verbindung zwischen der Einstrahlung kosmischer Strahlung und Wolkenbildung gibt. Allerdings besteht in der Forschung eine große Sicherheit, dass dieser Mechanismus zu schwach ist, um das Klima nennenswert zu beeinflussen.[26]


Bildergebnis für erdmagnetfeld


Mondfeld


Die Analyse des Mondbrockens Troctolite 76535, der mit der Mission Apollo 17 zur Erde gebracht wurde, deutet auf ein früheres dauerhaftes Magnetfeld des Erdmondes und damit auf einen ehemals oder immer noch flüssigen Kern hin.[7] Jedoch hat der Mond inzwischen kein Magnetfeld mehr.[8]

Lokale Magnetfelder

Interaktion mit dem Sonnenwind

Der Sonnenwind und das Sonnenlicht lassen auf der sonnenzugewandten Mondseite Magnetfelder entstehen. Dabei werden Ionen und Elektronen aus der Oberfläche freigesetzt. Diese wiederum beeinflussen den Sonnenwind.[9]

Magcons

Die seltenen „Mondwirbel“ ohne Relief, sogenannte Swirls, fallen außer durch ihre Helligkeit auch durch eine Magnetfeldanomalie auf. Diese werden als Magcon (Magnetic concentration) bezeichnet. Zu ihrer Entstehung gibt es unterschiedliche Theorien. Eine davon geht von großen antipodischen Einschlägen aus, von denen Plasmawolken rund um den Mond liefen, sich auf der Gegenseite trafen und dort den eisenhaltigen Mondboden auf Dauer magnetisierten. Nach einer anderen Vorstellung könnten manche der Anomalien auch Reste eines ursprünglich globalen Magnetfeldes sein.[10][11]